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Dispersion relations for liquid crystals using the anisotropic
Lorentz model with geometrical effects
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e-mail: abdulhlm@bgu.ac.il

(Received 24 February 2006; accepted 5 April 2006 )

The dispersion relations for the refraction indices and extinction coefficients of an ordered
system of anisotropic molecules are derived, taking into account absorption near the
resonance frequencies and the molecular geometrical form factor. The derivation is based on
a combination of the anisotropic Lorentz oscillator dispersion model and the generalized
Lorentz–Lorentz (LL) relationship. This relationship is shown to be consistent with the
isotropic limit. The geometrical form tensor (GFT) distinguishes this relationship from the
LL and the Calusius–Mossotti equations valid for isotropic media. Far from the absorption
bands the dispersion relationships are shown to converge to those of Sellmeier-type dispersion
relationships for transparent dielectrics that can be expanded into generalized Cauchy-type
series. The principal values of the GFT are shown to cause a red shift to the resonance
wavelengths that can be found from measurements in the disordered phase. Experimental
data are presented based on published works as well as measurements using a spectroscopic
retardation technique, and excellent agreement is obtained with the theoretical calculations
on several LC materials.

1. Introduction

Linear and nonlinear optical properties of liquid

crystals (LCs) are a subject of growing interest, because

of their strong electro-optic effects useful for a variety

of applications as well as for the study of their physical

phenomena [1]. Therefore it is of great importance to

have accurate dispersion dependences of their refractive

indices. Such relationships have been derived in the past

by several investigators [2–9] and used for fitting to the

experimental data [2, 9–12]. The derivation of the

dispersion relationship relies strongly on the relation

between the polarizability tensor and the dielectric

tensor. Such relationships have to take into account the

anisotropy of the constituent particles and their

geometrical form as well as the damping factor of the

absorption resonance peaks, in particular in the visible

range of the spectrum, which is not far enough from

the UV electronic absorption. Attempts to generalize

the Lorentz–Lorentz (LL) or the Calusius–Mossotti

(CM) equations to crystals taking into account the

geometrical form tensor (GFT) in the depolarization

fields existed since the first half of the 19th century

[13–15], and some were considered for application to

liquid crystals [16–22] in particular to explain the

temperature dependence of their polarizability [22–25].

Neugebauer [14] obtained an equation similar to the LL

equation:

eq{1

eqz2
~

4pN

3
bq ð1Þ

where the parameter bq was called the apparent

polarizability and eq with q51, 2, 3 being the principal

values of the dielectric tensor. Although Neugebauer

took the crystal shape into account, he did not consider

the anisotropic geometrical shape of the molecules or

constituent particles. Saupe and Maier [16] have

modified the Neugebauer relationship and obtained

the following formulae:

eq{1~4pNHqaq ð2Þ

where Hq5(12NLqaq)21 are called the local field

factors and Lq are the internal field constants; N is the

number density of molecules and aq the corresponding

principal values of the polarizability tensor.

Equation (2) may then be designated as the

Neugebauer–Saupe–Maier or simply NSM relationship.

Although equation (2) is in fact the most accurate

within the mean field theory, it did not become popular

because it did not show a good fit with experimental

data. In an attempt to improve the fit between measured

and calculated data for several molecular crystals, Vuks

[15] derived a slightly modified form of equation (1).
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Vuks’s equation is written as:

eq{1

SeTz2
~

4pN

3
aq ð3Þ

where <e> is the average of the principal values of the

dielectric tensor. The difference between Vuks’s rela-

tionship and the LL or CM equations is that in the

denominator the average value is replaced by the

principal value itself, that is: <e>«eq. In the derivation

of Vuks’s equation the following linear relationship

between the local and macroscopic fields was used:

E~
SeTz2

3
E0: ð4Þ

This is a crude approximation because it ignores the

geometrical shape of the molecules and simply uses the

equivalent to the isotropic case with the dielectric

constant replaced by the average <e>. An additional

apparent problem with Vuks’s relation is the coupling it

introduces between the principal values eq via the

averaged dielectric constant in the left hand side of

equation (3). In the limit of a perfectly ordered system

there is no justification for this coupling. De Jeu et al.

[19, 20] questioned the validity of Vuks’s equation and

made additional progress based on the Neugebauer

model by taking into account the geometrical shape of

the molecules and applying the statistical average over

the LC molecular orientations. In their approach,

however, they performed the average over the dielectric

tensor rather than the polarizability. This caused

inconsistency between their expression and the CM or

LL equations, as can be seen from the fact that it does

not converge to them in the isotropic limit. A

modification to the de Jeu et al., model was performed

by Ibrahim and Hass [21] who introduced an additional

tensor relating the macroscopic field to the cavity field;

however their final expression did not remove the

inconsistency with the isotropic case. Chandrasekhar

and Madhusudana [17] proposed a relationship that

basically uses the LL equation with the average values

for the polarizability and dielectric tensor:

1{
4

3
pNSaT

� �{1

~
SeTz2

3
: ð5Þ

Pelzl [18] on the other hand used the LL equation without

taking into account the geometrical form factors:

1{
4

3
pNaq

� �{1

~
eqz2

3
: ð6Þ

Lately Kedzierski et al. [25] have critically studied the

temperature dependence of the polarizability tensor and

the local field anisotropy factors and made compara-

tive study of the relationships (1)–(6). Surprisingly

they found that Vuks’s relationship better fits the

experimental data, while when using the NSM rela-

tionship they had to incorporate only very small

anisotropy to the geometrical form factors. In order

to find the dispersion dependence for the birefringence,

Wu and coworkers [3, 5, 7, 9] derived an approximate

expression based on Vuks’s relationship and the

following quantum mechanical expression for the

polarizability:

aE,\ lð Þ~gE,\
l2l�2

l2{l�2
ð7Þ

where l* is the wavelength of the nearest absorption

band and gQ,) are the oscillator strengths parallel and

perpendicular to the molecular axis. They obtained a

good fit with the experimental data [7, 9]. Later, the

present author [6] derived exact and explicit forms for

the dispersion relationships of the refractive indices

based on Vuks’s relationship and used them for

calculating the effective refractive indices of ferroelectric

liquid crystals and their electro-optic response [26–28].

The derived expressions based on Vuks’s relationship

can be written as [6]:

e\~
1za 7a\{aE

� �
1{a 2a\zaE

� � ð8aÞ

eE~
1z2a 4aE{a\

� �
1{a 2a\zaE

� � ð8bÞ

and in the single band approximation one obtains [6]:

nE,\~
GE,\l2{1

Gcl2{1

 !1
2

ð8cÞ

where G)5l*22+a(7g)2gQ), GQ5l*22+2a(4gQ2g)),

and Gc5l*222a(2g)+gQ) with a54pN/9. As can be

seen from these expressions, the indices n),Q are both

determined by coupled parameters G),Q and Gc, which

has no justification in a perfectly ordered system. The

expressions derived by Lam et al. [4], using the ab initio

calculation based on a three body model can also be

written in a similar form to equation (8 c), however the

Gc constant in their formulation has two different

values for n) and nQ, simply because two different spring

constants are assumed along the two directions Q and );

that is, l�E=l�\. In fact the relations of Lam et al. have

the same form obtainable when equation (7) is used in

the Neugebauer relationship (1).

Equations (8), and variations of them using power

series expansion and more than one absorption band,

(8 c)

(8 a)

(8 b)
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have been used extensively in the liquid crystals

literature [3, 5, 7, 9]. The fits to experimental data are

satisfactory in most cases, however more than one

absorption band was needed in certain other cases. The

motivation for this article is to present dispersion

relationships that take into account the form birefrin-

gence and dissipation effects, so that dispersion

relationships for the extinction coefficients are also

obtained. In the next section a formulation is presented

for the optical response of anisotropic oscillators within

the Lorentz model. In § 3 this formulation is applied to

liquid crystals. In § 4 some simplified forms are

presented for dispersion relationships useful for fit to

experimental data. In § 5 a comparison with existing

experimental data is presented and discussed, and in § 6

experimental results are presented for several LC

materials with a theoretical fit based on the proposed

formulation.

2. Response of anisotropic Lorentz oscillators

Our starting point is a model for an anisotropic

molecule that is considered as a collection of dipoles

induced by an external electromagnetic field having

wavelength l and frequency v52pc/l. In 3D space the

oscillating charges along the x, y and z axes in

orthogonal coordinate system gain potential energy

represented by the interaction potential:

U~
1

2

X
i

X
j

Kijuiuj ð9Þ

where i, j5x, y, z and ui,j are the displacements of the

oscillating masses along x, y or z, from the equilibrium

positions. The matrix Kij is the 2nd rank tensor of spring

constants, which is symmetric. In the principal axis

system with orthonormal basis vectors êe1, êe2, êe3, this

tensor becomes diagonal Kpq5dpqKqq where dpq is the

Kronecker delta function and p,q51, 2, 3. Assuming

effective masses m1, m2, m3 oscillating along the

three principal axes with corresponding frequencies

v1, v2, v3, the diagonal spring constants tensor is given

by:

Kpq~dpqmqv2
q: ð10Þ

The displacement vector u5{ux, uy, uz} is transformed

to the principal axis system through a rotation

transformation R such that: u95{uq}5Ru where q51,

2, 3. For a monochromatic harmonic EM field acting

on the dipoles in the principal axis system, we have

E05E0(v) exp (2ivt), with E0(v)5{E01, E02, E03}.

Assuming the local field amplitudes given by:

E(v)5{E1, E2, E3}, the equations of motion of the

oscillating masses become:

mq

d2uq

dt2
~QqEq{cq

duq

dt
{
X

q

Kpquq ð11Þ

where Qq with q51, 2, 3, is the effective oscillating

charge and cq is the corresponding damping constant.

Inserting the harmonic solution: u95{uq(v)} exp (2ivt)

into equation (11) we find the following solution:

uq vð Þ
� �

~ Kpq{ mqv2zicqv
� �

I3|3

� �{1
Qq

� �
E vð Þ ð12Þ

where I363 is a 363 unit matrix. The molecular dipole

polarization vector is therefore:

pq vð Þ~ Qquq vð Þ
� �

~ Kpq{ mqv2zicqv
� �

I3|3

� �{1
Q2

q

n o
E vð Þ

and by definition, the linear molecular polarizability

tensor is:

apq vð Þ~ Kpq{ mqv2zicqv
� �

I3|3

� �{1
Q2

q

n o
ð14Þ

which is a diagonal matrix with the following compo-

nents:

aqq vð Þ~
Q2

q

mq v2
q{v2{icqv

	
mq


 � : ð15Þ

In quantum theory this expression becomes:

aqq vð Þ~
X

l

f �qkl

v2
qkl{v2{iCqv


 � ð16Þ

where vqkl is the frequency of the electric dipole

transition between the two quantum states k and l

along the principal axis direction q, with f �qkl being the

effective oscillator strength and Cq the corresponding

damping constant.

3. Application to liquid crystals

Since most of the liquid crystals are uniaxial we restrict

the calculation now to this case, although the general-

ization to the biaxial case is straightforward. For

uniaxial media the two principal values of the molecular

polarizability are:

aE,\ vð Þ~
X

l

f �E,\kl

v2
E,\kl{v2{iCE,\v


 � ð17Þ

where the subscripts Q and ) designate directions

parallel and perpendicular to the molecular long axis,

respectively. For a uniaxial liquid crystal the statistical

averaging over the director orientations leads to the

(13)
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following expression for the macroscopic polarizabil-

ities, following Maier and Saupe [29]:

SaTe~
1

3
1z2Sð ÞaEz2 1{Sð Þa\

� �
ð18Þ

SaTo~
1

3
1{Sð ÞaEz 2zSð Þa\

� �
: ð19Þ

Where S is the order parameter, such that for a perfect

crystal S51 and we get <a>e,o5aQ,); while for an

isotropic liquid S50 and we get the average polariz-

ability <a>e,o5(aQ+2a))/35aav. The local field E is

related to the macroscopic field E0 by:

E~E0zeLL:P ð20Þ

where eLL is a 2nd rank tensor known as the geometrical

form tensor (GTF) or Lorentz tensor [13, 30–33], which

takes into account the shape of the molecules. This tensor

is the key in explaining the form birefringence of

anisotropic molecules and other ordered systems com-

posed of asymmetric entities. For a spherical molecule the

principal values of this tensor become equal to 4p/3, while

for other spheroids the general expressions are given in

the appendix. The relationship between the polarization

vector and the macroscopic field is:

P~
1

4p
eee{I3|3ð ÞE0 ð21Þ

where e is the dielectric tensor. In addition, the polariza-

tion and the local field are related by:

P~NeaaE: ð22Þ

Using equations (20)–(22) we get:

eee~I3|3z
4pNeaa

1{NeaaeLL ð23Þ

The principal values of the dielectric tensor for the

uniaxial case are then given by:

ee,o~1z
4pNSaTe,o

1{NSaTe,oLe,o
ð24Þ

where for the LC medium with a certain degree of order

S, the form factors Le,o are related to the molecular form

factors LQ,) by relationships similar to equations (18) and

(19) and the normalization condition (see appendix)

Le+2Lo54p, applies. For a prolate spheroid LQ,L), so

that Le and Lo behaviour with the order parameter is

opposite to the behavior of ae and ao, following

equations (18) and (19). Note that, based on equation (24)

the two principal refractive indices are determined by

coupled parameters only due to the averaging over the

molecular orientations when the order parameter S,1;

while for a perfectly ordered system with S51 the

coupling between these parameters disappears as

expected. It should also be noted that this expression

coincides with the CM equation. For an isotropic

medium: S50, <a>e,o5(aQ+2a))/35aav, Le,o54p/3 and

the result is:

eiso~1z
4pNaav

1{ 4p
3

Naav

: ð25Þ

The reason for the inconsistency of the de Jeu et al.

expression with the CM equation is because in their

calculation the statistical average over the dielectric

tensor was taken. In our case averaging over the

polarizability tensor was taken, which makes more sense

since the polarizability has a more microscopic meaning

than has the dielectric tensor. For comparison purposes

with the Vuks and LL relationships we write equation (24)

in the following form:

ee,o{1

ee,oz 4p=Le,o{1ð Þ
4p

3Le,o
~

4pN

3
SaTe,o: ð26Þ

For the general biaxial case this may be written as:

eq{1

eqz 4p
	
SLTq{1

� �~SLTqNSaTq ð27Þ

where q51, 2, 3. This relation represents a modified LL

relationship applicable to anisotropic media and reduces

to the isotropic case when Lq54p/3.

4. Simplified dispersion relationships

In terms of the wavelength, each absorption band

contributes the following real and imaginary parts of

the principal values of the polarizability tensor:

aqr lð Þ~
gql2

ql2 l2{l2
q


 �

l2{l2
q


 �2

zLql4
ql2

ð28Þ

aqi lð Þ~
gql4

qL
1
2
ql3

l2{l2
q


 �2

zLql4
ql2

ð29Þ

where gq~f �q

.
2pcð Þ2, and Lq~C2

q

.
2pcð Þ2. Note that

without absorption the imaginary part vanishes since then

Lq50 and equation (28) reduces to the well known

expression far from the absorption band, see equation (7).

For multiple absorption bands these equations become:

aqr lð Þ~
X

j

gqjl
2
qjl

2 l2{l2
qj


 �

l2{l2
qj


 �2

zLqjl
4
qjl

2
ð30Þ
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aqi lð Þ~
X

j

gqjl
4
qjL

1
2

qjl
3

l2{l2
qj


 �2

zLqjl
4
qjl

2
: ð31Þ

The corresponding real and imaginary parts of the

principal dielectric constants are given by:

eqr lð Þ~1z
4p a0qr{L0q a02qrza02qi


 �h i

1{L0qa0qr


 �2

zL02q a02qi

ð32Þ

eqi lð Þ~
4pa0qi

1{L0qa0qr


 �2

zL02q a02qi

ð33Þ

where we made the replacements N<a>qr,qiRa9qr,qi and

<L>qRL9q. The refractive index and extinction coeffi-

cient are then found from the relationships: eqr~n2
q{k2

q

and eqi52nqkq. Far from the absorption bands and

using the 1st order series approximation eqr(l)<1+4-

pa9qr one arrives at a dispersion relationship similar to

that of Sellmeir [34] for transparent dielectrics. As we

can see, this latest approximation ignores the depolar-

ization and one may use the 2nd order expansion:

eqr lð Þ&1z4pa0qrz4pL0qa02qr and obtain a form of gen-

eralized Sellmeir dispersion relationship. It should be

noted that one cannot arrive at these results if Vuks’s

relationship is used.

For the case of no damping, equation (32) yields:

nq~
1z 4p{L0q


 �
a0qr

1{L0qa0qr

2
4

3
5

1
2

: ð34Þ

This relationship is very useful, as it will be shown later

that damping effects are negligible in the visible range of

the spectrum in many cases. Since a9qr,1 in particular

far away from the absorption resonance, equation (34)

can be expanded into a power series, and up to the 5th

order we get:

nq&1za1a0qrza2a02qrza3a03qrza4a04qrza5a05qr ð35Þ

where:

a1~2p; a2~2p L0q{p

 �

; a3~2p L02q {2pL0qz2p2

 �

;

a4~2p L03q {3pL02q z6p2L0q{5p3

 �

;

a5~2p L04q {4pL03q z12p2L02q {20p3L0qz14p4

 �

:

Note that in the absence of absorption the form factor

enters only in the non-linear terms. The non-linear

terms also reveal non-linear dependence of the refrac-

tive indices and the birefringence on the order

parameter S. This non-linear dependence was reported

recently in particular far from the transition tempera-

tures [35]. From equation (34) we can also write a

dispersion relationship equivalent to equation (8) for

the single absorption band case and when S51 as

follows:

nq~
Fql2{1

F 0ql2{1

 !1
2

ð36Þ

where now Fq~l{2
q zNgq 4p{Lq

� �
, and

F 0q~l{2
q {NgqLq. These expressions have the same

form as that derived by Lam et al. [4], however their

expressions for Fq and F9q are different because they do

not take into account the anisotropy of the depolariza-

tion form factor Lq.

Series expansion of equation (36) in powers of 1/l
yields the following Cauchy-type dispersion relation:

nq&C0z
C2

l2
z

C4

l4
z

C6

l6
ð37Þ

where

C0~
Fq

F 0q

 !1
2

; C2~
Fq{F 0q


 �

2F
1=2
q F 0q

3=2
;

C4~
Fq{F 0q


 �
3FqzF 0q


 �

8F
3=2
q F 0q

5=2
;

C6~
Fq{F 0q


 �
5F2

q z2FqF 0qzF 02q


 �

16F
5=2
q F 0q

7=2
:

For the fit to the experimental data to be physical, the

fitting parameters should be Fq and F9q rather than the

polynomial coefficients which are determined by Fq and

F9q. In the limit of l%lq, we get: nq0& Fq

.
F 0q


 �1
2

, which

can be further expanded as:

nq0& 1z
4pNl2

qgq

1{Nl2
qgqLq

 !1
2

&1z2pNgql2
qz2pN2g2

ql4
qLq:

ð38Þ

From this equation we can see how the value of the

geometrical form factor can affect the resonance

frequency. In order to get the same nq0 for different

values of Lq, the resonance wavelength has to be shifted

from its value in the disordered phase by a value given

Dispersion relations for liquid crystals 1031

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
5
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



by:

Dlq&
Ngql3

q Lq{4p=3
� �

2{Ngql2
q Lq{4p=3
� � : ð39Þ

This is an approximate expression, valid when only a

single band is considered, however it gives an analytic

qualitative behaviour of the dependence of the reso-

nance wavelength shift on the variety of parameters.

The strongest effect on the resonance wavelength shift is

the parameter gq; as we shall see later this shift is about

15 nm for the sRs* transition peak located at around

120 nm, while it is less than 2 nm for the pRp*

transitions because their gq parameters are smaller by

at least an order of magnitude.

Ignoring the difference in the resonance wavelengths,

that is lQ<l), the birefringence Dn5ne2no in this limit

maybe written as:

Dn0&2pNl2
qDgqz2pN2l4

q g2
e Le{g2

oLo

� �
: ð40Þ

This again shows that the birefringence is not a linear

function of the order parameter as found lately [36].

Hence the anisotropy in the form factor adds some non-

linearity to the birefringence behaviour in relation to the

order parameter.

5. Comparison with experimental data

For comparison with experimental data we use available

data for the widely studied liquid crystal 5CB, and the

Merck materials E7 and E44, using experimental data

measured by the spectroscopic retardation technique. The

dispersion of LC refractive indices in the visible and the

near infrared originates from electronic absorption bands

in the UV. These bands are characteristic of the allowed

transitions in phenyl rings (benzene). Hence knowledge

of the characteristics of the UV absorption spectra is

crucial in obtaining a physical fit to the experimental

data. The LC 5CB (4-cyano-49-n-pentylbiphenyl) is

known to exhibit three electronic absorption bands in

the UV at wavelengths: l1<120 nm, l2<200 nm,

l3<282 nm. The first band has never been measured

experimentally while the last two were reported by Wu

et al. [3, 5, 7, 9] using polarized UV spectroscopy. The

2nd peak is actually has an additional companion peak

at around 214 nm. The measured absorption peak

wavelengths are slightly different from those predicted

by the molecule symmetry group, due to the effects of

long range order in the LC medium represented by the

order parameter S, the depolarization field represented

by the form factors Le, Lo and the existence of

conjugated p-bonds in the phenyl ring. Tables 1 and 2

summarize the absorption peak wavelengths, oscillator

strengths and damping factors used in the fitting to the

experimental data. The molecular mass for 5CB is

M5249.359 g mol21, and using a value of 1 g cc21 for

the density we obtain the get number density of

molecules N<2.415 nm23.

In figure 1 we show the dispersion curves calculated

using equations (30)–(33) and fitted to Li and Wu [9]

experimental data in the spectral range 380–820 nm.

The experimental data of [9] was approximated using

their 3-band model fit. We used an order parameter

S50.61629, the same as used in [9], and the fitting

parameters are: the absorption peaks parameters

summarized in table 1, and the geometrical form factor

Le. The fit is found to be highly sensitive to Le, giving

for the best fit the value: Le54p/3.7; and from

the normalization condition we get Lo<4p/2.7407.

The ratio Le/Lo50.741, is not far from the value of

Table 1. Fitting parameters used for the o-wave. The units of the g parameters have dimensions nm3 while those of the L
parameters are nm2. The fitting was made to the experimental data, within the range 370–900 nm.

LC l1o L1o61027 g1o61027 l2o L2o61027
g2o

61029 l3o L3o61027 g3o61029 l4o L4o61027 g4o61029

5CB 104 7 23.4 195 12 18 215 0.45 8.6 280 0.012 0.0097
E7 104 0.2 22.8 195 12 16 223 0.35 9.8 248 0.086 20
E44 104 0.02 24 195 0.12 16 223 0.15 12 248 0.13 11

Table 2. Fitting parameters used for the e-wave. The units of the g parameters have dimensions nm3 while those of the L
parameters are nm2. The fitting was made to the experimental data, within the range 370–900 nm.

LC l1e L1e61027 g1e61027 l2e L2e61027
g2e

61029 l3e L3e61027 g3e61029 l4e L4e61027
g4e

61029

5CB 122 1.2 24.3 196 1.01 82 216 0.82 10.5 280 0.342 53
E7 122 0.15 23.4 196 0.33 76 223 0.22 11 246 0.087 49
E44 122 0.011 20.1 196 0.055 95 223 0.22 22 246 0.16 110
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,0.8–0.87 obtained by Kedzierski et al. [25]. Since

Kedzierski et al. found that the GFT anisotropy

DL5Lo2Le is linear with the order parameter S, it is

possible that the averaging equations (18) and (19)

apply also to Lo, Le; however we shall show now that

this issue is questionable. Using the value of the order

parameter and assuming the averaging process of

equations (18) and (19) applies, we get LQ<1.7542p
and L)<2.3681p. Using these latest values we find that

5CB is an oblate spheroid with a semi-axis ratio of

r<0.65; or if we consider it as a cylinder then this

corresponds to a radius to length ratio of d/l<1.47 (see

the appendix). This does not seem realistic because these

LCs are known to be positive uniaxial, therefore we

raise the question whether the averaging process of

equations (18) and (19) applies also to the GFT. In fact

the ratio of Le/Lo<0.8–0.87 obtained by Kedzierski et

al. gives values of LQ, L) even more unrealistic, and in

particular that the molecules they studied have a larger

length to width ratio. Without the averaging process

(that is, using Le,o rather than LQ,)), 5CB is found to be

a prolate spheroid with r<1.25 or a cylinder with l/

d<1.07, which is more realistic. The question whether

the averaging process of equations (18) and (19) applies

also to Lo, Le remains to be clarified, perhaps with

additional experimental data.

The strong effect of the GFT on the fit is demonstrated

in figure 2 where the dispersion curves calculated for

different values of Le vary by up to 10%, demonstrating

that it is very critical to know this parameter. A similarly

strong effect, as expected, on the absorption spectra is

shown in figure 3. Before performing the fit to the

refractive indices we calculated the UV optical density

spectra following the spectra presented by Wu [7], so that

the same resonance wavelengths are obtained, the same

spectral widths and peak heights. After this step we

readily get the fit to the refractive indices shown in

figure 1. Hence the measurement of the UV absorption

spectra is a critical step towards a better understanding of

the dispersion curves and the role of the anisotropic

depolarization field.

By measuring the UV absorption spectra and making

a fit using the present model to find the GFT, the

calculation of the dispersion curves becomes more

reliable. In particular, measurement of the UV absorp-

tion spectra as a function of temperature will indicate

the temperature behaviour of the GFT. Measurements

of the refractive indices and birefringence in the UV, for

example down to 300 nm, will give added confidence for

the damping factors. As seen in figure 4, the damping

has little effect on the dispersion for wavelengths above

400 nm, and so generally the damping values used might

not be accurate enough. However in this particular case

we first made the fit to the absorption spectra and

ensured that the extinction coefficient in the near

infrared region is on the order of 0.001, close to the

well known value. A note should be added here on the

use of the Cauchy expansions. As shown in figure 5 the

Figure 1. Calculated dispersion curves for the refractive indices of 5CB using the present model fitted to data from [9] with the
fitting parameters given in tables 1 and 2 and Le54p/3.7, S<0.61629.
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series expansion for the case of no damping up to the

5th order in the polarizability, equation (35), although it

is excellent in the case of no, does not coincide

completely with the exact curve in the case of ne.

Lower order expansions are unsatisfactory in both

cases. Since the 5th order expansion in the polarizability

can be converted into a 10th order expansion in the

inverse wavelength, we can conclude that for the

Cauchy expansion to be physically correct, a larger

number of terms must be included in the expansion.

In order to gain additional confidence in the fitting

parameters used for 5CB we compared our results with

recent data obtained by Tkachenko et al. [36] using

spectroscopic ellipsometry in the range 400–1700 nm.

Figure 2. Calculated dispersion curves using the same parameters as used in figure 1 but for two different values of Le, showing
that it has a strong effect.

Figure 3. Absorption coefficients of 5CB calculated using the parameters used in figure 1 for two different values of Le showing its
strong effect. The absorption coefficient curves for Le54p/3.7 agree very well with the optical density measured in [7] using
polarizing spectroscopy.
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The comparison is shown in figures 6 and 7 where the

only parameter changed is the order parameter calcu-

lated from S5[(Tc2T)/Tc]
0.142 with Tc2T55 K. Their

data is taken based on their Cauchy fit called Fit 2,

which they found to be close to the fit of the data of

Karat and Madhusudana [37]. The birefringence data

(figure 7) were found based on their [36] Muller matrix

fit (called MM Fit) to the spectroscopic ellipsometry

data. The maximum difference between the measured

and calculated values is smaller than 0.003 in the case of

the birefringence, which is within their experimental

accuracy as the temperature is accurate within ¡1 K,

leading to an inaccuracy of ¡0.005 in the birefringence.

Perhaps to minimize the effect of temperature fluctua-

tions one should measure at a temperature far from the

transition temperature.

Another LC material that has been widely studied is

the Merck material E7, which exhibits different

resonance wavelengths. For comparison with experi-

ment we took the data from [10] and used a fit on the

Figure 4. Effect of damping on the dispersion curves using the parameters of figure 1, showing that damping can affect the fit in
the short wavelength region.

Figure 5. Comparison between exact dispersion curves and those obtained using the series expansion of equation (35) for the case
of no damping, and using the same parameters of figure 1.
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parameters listed in table 1 together with Lo, Le, see

figure 8. The calculated absorption spectra are shown in

figure 9 where three bands are considered in this case

leading to a satisfactory fit to the experimental data of

the refractive indices (figure 8). The birefringence

experimental data taken from two different sources as

shown in figure 10 are remote from each other, while

our calculated curves are somewhere between the two

data sets. Additional experimental data for the birefrin-

gence is required to confirm the calculations.

6. Dispersion curve measurement using spectral

retardation

The spectral retardation technique consists of measur-

ing the retardation from the liquid crystal sample over a

wide spectral range and performing the fit between the

Figure 6. Comparison between dispersion curves of 5CB as measured in [36] and those obtained using the parameters of figure 1
but with a different order parameter S<0.5569. The data of [36] were found from their Cauchy fit 2: no51.5124+8600/l2;
ne51.6452+19300/l2.

Figure 7. Comparison between measured birefringence dispersion curves of 5CB [36] and those obtained using the parameters of
figure 1 but with the different order parameter S<0.5569. The data of [36] were found from their Muller matrix fit:
Dn50.1348+10070/l2.
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measured and calculated spectra with the refractive

indices no, ne as the fitting parameters. A small spot

(,0.5 mm diameter) of polarized white light is incident

on the sample, transmitted through it, then reflected

using a mirror to return it back through the sample

and then through a crossed polarizer. Figure 11

shows schematically the experimental set-up, where to

maximize the contrast of the retardation peaks, the

sample is oriented azimuthally such that the optic axis

makes an angle of w545u with the polarizer axis. The

reflected light spectrum is analysed using a fibre-optic

spectrometer with 1 nm resolution within the spectral

range 400–850 nm. This configuration has two

main advantages: (1) reflection-mode configuration is

Figure 8. Calculated dispersion curves for the refractive indices of E7 using the present model fitted to the data of [10], with the
fitting parameters given in tables 1 and 2 and Le54p/3.2, S<0.72079.

Figure 9. Absorption coefficients of E7 calculated using the parameters used in figure 8.
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preferable because it doubles the number of retardation

peaks, thus the information content of the spectrum is

larger; (2) the crossed-polarizers configuration mini-

mizes the effect of reflections from the substrate

boundaries. Further to minimize the effect of reflections

from the boundaries, we took the reference signal as the

average between the two spectra at the sample azimuth

orientations w50u and w590u (the e and o orientations

respectively) with the polarizers being parallel. The

sample consisted of the LC material E44 homoge-

neously aligned between two glass plates using mechan-

ical rubbing of a 20 nm thick HD2555 polyimide layer
that is known to give a very small pretilt angle. The

sample thickness was 15 mm achieved using Mylar

spacers and confirmed using the fringe counting

technique on the spectrum of an empty cell, measured

using the same set-up but in a parallel polarizers

configuration. Figure 12 shows the experimental data

together with the calculation based on the transfer

function of a retardation plate: R5sin2 [2pd(ne2no)/l]
where the fitting parameters are no, ne as a function of

the wavelength. We found that the data similarly fit the

exact calculations based on the analytic 464 matrix

approach [38], because the glass substrates are anti-

reflection coated and multiple reflections do not play a

role. The dispersion curves measured based on this

technique together with the calculated curves are shown

in figure 13, exhibiting excellent agreement. The calcu-
lated curves are based on the three-bands absorption

model as shown in figure 14 and using the parameters

listed in table 1. We have also included one additional

estimated point at 1550 nm, based on interferometric

measurements at this particular wavelength.

To summarize, using the anisotropic Lorentz model

for an oscillating dipole combined with the generalized

Lorentz–Lorentz relationship, a dispersion relationship

Figure 10. Comparison between measured birefringence dispersion curves of E7 from [3] and [12], and those obtained using the
parameters of figure 8. The data of [3] found from their single band fit using G53.0661026 nm2, l*5250 nm. The data of [12] were
found from the fit: Dn50.2143726693/l2+2.5916109/l4.

Figure 11. Schematic of the experimental set-up used for the
refractive indices dispersion measurements of E44.
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is derived for the polarizability with the existence of

damping. Based on this, a dispersion relationship for

the refractive indices and absorption coefficients is

derived and applied to liquid crystals. These relation-

ships are consistent with the limiting cases of isotropic

medium and spherical molecules, as well as with the well

known dispersion formulae far from the absorption

resonance when the medium becomes highly transparent

and Sellmeier-type relationships apply. Comparison with

experimental data shows good agreement when damping

is taken into account, in particular for wavelengths in the

visible range below 500 nm. Comparison with available

Figure 12. Measured and fitted reflectivity spectra using the spectroscopic retardation set-up described in figure 11 and in the text,
on a 15 mm homogeneously aligned E44 LC cell in reflection mode.

Figure 13. Measured and fitted refractive indices dispersion of E44 LC. The measured data are found from the fit between the
calculated and measured reflectivity spectra shown in figure 12. The calculated curves were obtained using the present model with
the parameters given in tables 1 and 2 and using Le54p/3.15, S<0.80044.
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experimental data on several LC materials is presented

and a measurement technique is described. From the

measured spectral retardation on E44 LC the dispersion

curves are found and compared with the model showing

an excellent fit. The reflection mode spectral retardation

technique has the advantages of doubling the path length

and minimizing reflections from substrates using a

crossed polarizers configuration and normalization to

signals containing multiple reflections of the e and o

waves. The expressions derived in this work and the

spectral retardation technique are also useful for other

ordered systems of molecules, such as rubbed or UV-

oriented polymer or polyimide thin films used as

alignment layers for liquid crystals [39]. Although these

layers are usually thin, in the range of tens of nm, it is

possible to enhance the signal-to-noise ratio by making

them thicker or by modulating the light beam polariza-

tion in a similar manner to ellipsometry, or alternatively

by performing phase-locked measurement.
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Appendix

Expressions for the principal values of the depolarization
form tensor

For an ellipsoid of uniform density with semi-axes a, b,

c, the principal values of the form factor are given by

the general integral [26, 27, 29, 40–42]:

Lq~2pabc

ð?

0

ds

x2
qzs


 �
a2zsð Þ b2zsð Þ c2zsð Þ½ �

1
2

ðA1Þ

where q51, 2, 3 and x15a, x25b, x35c. Normalization

requires that
P
q

Lq~4p. This general form of Lq for the

biaxial case can be expressed in terms of elliptic

integrals. For the uniaxial case the ellipsoid becomes

an ellipsoid of revolution and the integral above is
simplified. Assuming (a) the polar semi-axis and (b) the

equatorial semi-axis, and defining the eccentricity

e~ 1{r2
� �1

2 where r5a/b, the following results are

obtained. For a prolate spheroid (r.1):

La~
4p 1{e2
� �

e2

1

2e
ln

1ze

1{e
{1

� 
: ðA2Þ

For an oblate spheroid (r,1):

La~
4p

1{r2
1{

r

1{r2ð Þ
1
2

ar cos r

" #
: ðA3Þ

For a cylinder of diameter d and length l, the principal

value along the cylinder axis is:

La~4p 1{
l

d2zl2ð Þ
1
2

" #
: ðA4Þ

In all cases (A2)–(A4) the principal values along the b-

axis are found from the normalization condition:

Lb~
1

2
4p{Lað Þ: ðA5Þ(A5)

(A1)

(A2)

(A3)

(A4)
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